Atomic-environment classification of the chemical elements

P. Villars

Intermetallic Phases Data Bank, Postfach 15, CH-6354 Vitznau (Switzerland)

J. L. C. Daams

Philips Research Laboratories, PO Box 80000, 5600 JA Eindhoven (Netherlands)

Abstract

Of the 103 known chemical elements, 96 crystallize in 52 different crystal structures. Included in these 52 structures are those which are stable under normal (298 K, 100 kPa) conditions (NC) as well as high or low temperature (HT/LT) and high pressure (HP) conditions, but with the O-, N-, and C-stabilized structures excluded as well as structures observed in thin films.

Of the 275 experimentally found and reported element modifications, 95% can be classified with just seven different atomic environment types (AETs), all belonging to the single-environment type. A single-environment type encompasses all structures in which all atoms present in the structure have the same AET.

The seven AETs observed are the octahedron, the cubo-octahedron, the twinned cubo-octahedron and the rhombic dodecahedron for metals, and the dumb-bell, the double link and the tetrahedron for non-metals.

With modified structural stability diagrams (SSDs) we show that under normal conditions the elements are simply separated into different AET domains. With the HT/LT and HP crystal structure data included in our SSDs, we predict for 31 elements the AET modification (so far unknown) to be found under HP or HT/LT conditions, based on our SSD-AET domains.

Finally, our investigation includes a comprehensive, critically evaluated crystallographic data set for all element modifications as well as a recommended atomic volume table. These volumes are calculated from the unit cell volume divided by the number of atoms per unit cell.

1. Introduction

In this paper we present a classification of the chemical elements according to the atomic environments as realized in the solid state. We observed that the 96 elements crystallize in 52 different structure types, including the modifications formed under normal (298 K, 100 kPa) conditions (NC) as well as those formed under high pressure (HP) and high or low temperature (HT/LT) conditions. Apart from the modifications excluded already, we also excluded the boron structure types because they are very complex structures and it is probably better to described them as structure types built up from clusters of boron atoms. For example, the hR12 B structure type can be described as a close packing of boron clusters, each cluster being an icosahedron formed by 12 boron atoms (with no central atom, which is in contrast to our AETs). From ref. 1 we know that other boron structures can be described in terms of boron clusters with up to 156 atoms.

From these experimental facts it can be concluded that the common idea that bonding in the elements is simple is incorrect. The bonding situation in the elements is in fact very complicated, almost as complicated as in intermetallic compounds, where we often have a mixture of metallic, covalent and ionic bonding and where it is very difficult to predict proportions.

The electrical conductivities of the elements [2] give the possibility of dividing them into metals and nonmetals (see Table 1). We define the elements with an electrical conductivity greater than $10^4 \Omega^{-1} \text{ cm}^{-1}$ as metals and those with a conductivity of $10^4 \Omega^{-1} \text{ cm}^{-1}$ or less as non-metals (indicated by a bold frame in Table 1). It is interesting that all metals have a conductivity in the range between 10^5 and $10^7 \Omega^{-1} \text{ cm}^{-1}$, Ag being the best and Pu the worst conductor, compared with the non-metals where the conductivities range from 10^4 to $10^{-22} \Omega^{-1} \text{ cm}^{-1}$.

Assuming pure metallic bonding in metals, the situation from the structural point of view is very simple: positive cores surrounded by a "cloud" of non-directional free-conducting electrons will result in either a cubic or hexagonal close-packed (c.c.p. or h.c.p.) structure in which each coordinating atom lies exactly the same distance from the central atom.

King [3] pointed out that the structures of non-metals are governed by the number of available s- and p-

																												6 -1	
н																												He	
u	Be																		в		С	ľ	N		0	Т	F	Ne	
10.7	15.2																		1.10	4	7.7.1	0⁴							
																						1						1	
Na	Mg	-																	AI		Si	\neg	P		s	-	CI	Ar	
21.1	25.0																		38.2		10 ² -1	05	10 ⁻¹⁵	;	5·10 ⁻²	2			
ĸ	Ca	Sc	Ті	V	/	Cr		Mn	Fe		Co		Ni		Cu		Zn		Ga		Ge	-	As		Se	-	Br	Kr	-
15	25	1.57	2.2	3 5	5.5	7.7		0.39	10		15.4		13.3		58.8		16.4		7.35		1.54	10°	3		1.25-1	01			
Rb	. Sr	Y	Zr	N	lb	Мо		Tc	Ru		Rh		Pd		Ag		Cd		In		Sn		Sb		Te	-		Xe	
7.9	5.0	1.54	2	6	.25	20		5.9	13.3	·	19.6		7.7		62		13.3		11.9		8.85		2.56		6.25·1	0 ²	7.7.10-14		
Cs	Ba	La	Hf	T	ัล	w		Re	Os		lr		Pt		Au		Hg		Т		Pb		Bi		Ро	-	At	Rn	
4.81	1.67	1.77	2.5	7	.15	20		5	11.1		20.4		10.2		43.5		1.04		6.65		5.27		0.92						
Fr	Ra	Ac		Ce	P	r	Nd	Pm	-l	Sm		Eu	<u> </u>	Gd		Tb	_	Dy	<u> </u>	Но		Er		Tm	Y	/b	Lu		
				1.33	1.	42	1.56	1.0	0	0.99		1.23		0.70		0.86		1.11		1.11		1.18		1.11	3	.7	1.47	,	
L	l			Th	P	a	U	Np		Pu		Am	•	Cm		Bk		Cf	_	Es		Fm		Md	-	10	Lr		
				5.26			3.1			0.69																			
										1											I								

TABLE 1. The electrical conductivities $(10^4 \ \Omega^{-1} \ \text{cm}^{-1})$ of the elements (273–293 K) in periodic system representation. The nonmetals are indicated by a bold frame.

electrons following the empirical Hume-Rothery "valence electrons equals 8 - N" rule, where N is the group number. The inert gases in group VIII thus have no valence electrons for bonding, so that when these elements condense to solids at low temperature, they crystallize in close-packed structures, the atoms being held together (in contrast to metals) by van der Waals forces. The halogens (group VII) are composed of dumb-bells (diatomic molecules) with just one valence electron. At low temperatures in the condensed state these molecules are also held together by van der Waals forces.

Elements of group VI are composed of double links: the "central" atom forms with two neighbouring atoms a non-linear molecule. These two single-covalent linkages form strongly bonded chains or rings, the chains or rings again being held together by van der Waals forces in the solid state. Like the above-mentioned boron atoms, the elements of this group can be described as cluster structures, *e.g.* the sulphur double links lead to sulphur clusters (rings) with seven or eight sulphur atoms. The structure type oF128 S consists of 16 S₈ rings and the structure types mP28 S and mP56 S consist of four and eight S₇ rings respectively.

Group V non-metals, with three electrons available, form tetrahedral molecules (without a central atom) when bonded to a "loose" triangle, while group IV non-metals form tetrahedra (with a central atom) with their four electrons available.

Section 2 gives the general idea of the atomic environment approach and describes the method and terminology used.

In Section 3 we give the results of our analysis of the modifications stable under NC (298 K, 100 kPa).

In Section 4 the results of our analysis of the HP and HT/LT modifications are given and it is shown that changes in the atomic environments can follow specific sequences during polymorphic transformations.

In Section 5 the NC modifications are classified in modified structure stability diagrams (SSDs) [4]; these SSDs have proven to be very successful in separating the structure types of intermetallic compounds [5–7]. In a separate discussion the HP and HT/LT modifications are included in the SSDs.

Section 6 contains a complete table of critically evaluated crystallographic data for all experimentally known element modifications as well as a complete data set of atomic volumes calculated from the unit cell volume. The results are discussed together with metallic, covalent and ionic radii which have been derived from intermetallic compounds with predominantly metallic, covalent or ionic bonds. In contrast to the experimentally determined or derived atomic volumes (radii), we compare these with the pseudopotential radii as calculated by Zunger [8].

2. The atomic environment approach

Before we introduce our atomic environment approach, we have to mention that in addition to the definition given below, which is familiar to many crystallographers, there exists another approach to describe the local environment of an atom, namely the Voronoi (also known as the Wigner–Seitz or Dirichlet) polyhedron construction which is most often used by physicists.

2.1. Atomic environment type (AET)

The aim of the concept described in the following is to define each atomic environment (AE) as clearly as possible so that we will ultimately be able to group them into distinct AETs.

First we define the maximum-gap rule, which is based on the method proposed by Brunner and Schwarzenbach [9], where all interatomic distances between an atom and its neighbours are plotted in a next-neighbour histogram (NNH). In the NNH the height of the bars is proportional to the number of neighbours (n) and it is convenient to express all distances (d) relative to the shortest distance (d_{\min}). In most cases a clear maximum gap is revealed. The AE or coordination polyhedron is constructed with the atoms to the left of this gap. Figures 1(a)-1(c) show the NNHs of the cubo-octahedron (c.c.p. or cF4 Cu type), the twinned cubo-octahedron (h.c.p. or hP2 Mg type) and the rhombic dodecahedon (cI2 W type) respectively. Also given in Fig. 1 are drawings of the AEs together with their polyhedron codes (explained below) and coordination numbers (CNs).

This maximum-gap rule, however, leads in a few cases to incorrect AEs. These incorrect AEs can have, for example, more than the central atom enclosed or be AEs with atoms lying on one or more faces of the coordinating polyhedron.

For these incorrect environments we define another rule: the maximum-convex-volume rule. In this rule a coordination polyhedron is defined as the maximum convex volume around only one central atom enclosed by convex faces with all coordinating atoms lying at the intersections of at least three faces. In those cases where two (or more) equal or practically equal maximum gaps were observed in an NNH, we kept the number of different AETs in a structure type as small as possible. In the structures of the p-elements we observed irregular atomic environments (IAETs). These are AEs which, unlike AETs, cannot be described as convex volumes, *e.g.* the dumb-bell, the double link and the triangle.

2.2. Polyhedron code

The AETs are characterized by a polyhedron code [10] based on the number of triangles, squares, pentagons, hexagons, etc. that join each other in the different vertices (coordinating atoms). The code gives the number of equivalent vertices with the number of faces in the above-mentioned sequence as an exponent. For example, polyhedron 11-a in Fig. 2 has nine vertices adjoining two triangles and two squares and two vertices adjoining no triangles and three squares. Its code therefore is $9^{2.2}2^{0.3}$ with CN = 11.

2.3. Coordination type

In our classification, structure types belong to a certain coordination type when they have the same number and kinds of AETs. In the simplest case, with just one kind of AET, the atomic-environment type is equal to the coordination type.

2.4. Single-environment type

A crystal structure with all atoms (point sets) having the same AET is called a single-environment type. This means that each atom in the unit cell is chemically identical in terms of the elements.

2.5. Two- and poly-environmental types

Structures having two or more different AETs belong to the two- or poly-environment types. This means for

Fig. 1. The atomic environments as they are realized in (a) c.c.p., (b) h.c.p. and (c) b.c.c. structures. The realized coordination polyhedra (AETs) are the cubo-octahedron, the twinned cubo-octahedron and the rhombic dodecahedron respectively.

the elements that we have two or more different atomic positions in the structure type. This is of course only possible when we have a different bonding situation for each atomic position.

The lattice symmetry and space group of a compound are important for certain physical properties, but for crystal chemistry they are less important. A minor change in the position of the atoms in a crystal structure can reduce its symmetry (and space group), although the resulting deformation of the atomic environment may be negligible so that the AET does not change.

For intermetallic phases with cubic and rhombohedral structure types [11, 12] we could reduce the number of different structure types significantly by grouping them into coordination types with the same or similar AETs.

We will show that a similar simplification can be achieved with the 52 crystal structures types in which the elements crystallize. Crystal structures with the same or similar AETs have a common feature and are therefore grouped as a coordination type. The structure types belonging to the same coordination type have only minor differences and one could call a polymorphic transformation from one structure to another structure within a coordination type a second-order transformation. For example, cF4 SZn and hP4 SZn, both structures belonging to the single-environment type, have the tetrahedron as an AET. The cohesive energy difference between the two modifications must be much smaller when compared with a transformation which involves a change in the AET. This energy difference will be significantly higher when the CN is also changing than when only the AET changes but the CN remains the same.

Much more complex is the situation in the structure types with two, three or more different AETs and it is difficult to speculate about the cohesive energy difference between structure types belonging to a singleenvironment type and those belonging to a two- or poly-environment type.

Fig. 2. The atomic environments as they are realized under NC, HT/LT and HP conditions in the modifications of the elements with their label (coordination numbers are incorporated in the label) and the polyhedron code.

3. Atomic environment classification under normal conditions

In Table 2 we give the 52 structure types in which the element modifications crystallize under NC, HP and HT/LT conditions. Table 2 lists the structure types (alphabetically ordered) and we give for each type the Pearson symbol, the space group, the Wyckoff letter and the coordinates of the atoms. In addition, we give for each point set the label of the AET (the CN is incorporated in our label), the number of different AETs and the elements crystallizing in this structure type. Figure 2 shows drawings of AETs found in the element structures together with their codes and labels, the latter being used throughout the paper to specify a certain AET.

The labels of the AETs are a combination of the CN and a character as explained in ref. 12, where we have analyzed the rhombohedral "intermetallic" structure types.

In Table 3 we present all modifications in the periodic table representation, the structure types being given by a number (first column of Table 2). The position of those numbers in the element boxes indicates whether the structure type was observed under NC, HP or HT/LT conditions, as demonstrated in the inset.

When we look at the metal element structures (as defined in Section 1; see Table 1) from the AET point of view and assume a simple bonding situation in pure metals (in contrast to the intermetallic compounds which have metallic, covalent and ionic bonds), we expect, as already explained in Section 1, either a cubo-octahedron or a twinned cubo-octahedron as an AE.

Assuming pure non-directional metallic bonding, crystal structures with AETs having two different distances, e.g. as the rhombic dodecahedron (see Fig. 1(c)), should not occur. In this AET the first eight neighbouring atoms have an interatomic distance which is 15% shorter than the next six neighbouring atoms, although all 14 atoms clearly belong to the first coordination sphere.

Even harder to understand would be structures belonging to the two- or poly-environment types, because this would point in these cases to directional or ionic bonding and exclude purely non-directional metallic bonding.

Accepting the validity of the empirical "valence electrons equals 8-N" rule for non-metals, this will mean that from the AET point of view only the following AETs are available:

TABLE 2. The structure type	s in which the	elements crystallize,	ordered alphabetically.
-----------------------------	----------------	-----------------------	-------------------------

No.	Structure type/PS	Space group	Wyckoff notation	Atom X	ic Coordir Y	nates Z	AET	No. of AET's	Elements crystallizing in this structure type
1	Am/mP4	P2 ₁ /m	2a 2e	0 0.380	0 1/4	0 0.275	14b 14b	1	Am (HP)
2	As/hR2	Rām	6c	0	0	0.2271	6a	1	As,Bi,P(HP),Sb,Te(HP)
з	Be/oP4	P21212	4c	0.67	0.82	0.70	11-a	1	Be(HP)
4	Bi/mC4	C2/m	4i	0.250	0	0.125	6–a	1	Bi(HP)
5	Biln/hP1	P6/mmm	1a	0	0	0	8c	1	Si(HP)
6	C/hP4	P6 ₃ /mmc	2b 2c	0 1/3	0 2/3	1/4 1/4	3#b 3#b	1	с
7	C/cF8	Fd3m	8a	0	0	0	4–a	1	C,Ge,Si,Sn
8	Cf/aP4	Pī	1a 1c 2i	0 0 0.572	0 1/2 0.259	0 0 0.433	12b 12b 12b	1	Cf(HP)
9	Cl ₂ /oC8	Cmca	8f	0	0.13	0.10	1#a	1	Cl ₂ Br ₂ ,I
10	CrFe/tP30	P4 ₂ /mnm	2a 4f 8i 8i 8j	0 0.3986 0.4635 0.7393 0.1827	0 0.3986 0.1312 0.0661 0.1827	0 0 0 0.2520	12–a 15–a 14–a 12–a 14–a	3	U(HT)
11	Cs/tP8	P4 ₂ /mbc	8h	0.073	0.250	0	14–b	1	Cs(HP)
12	Cu/cF4	Fm3m	4a	0	0	0	12 - b	1	Ac,Ag,Al,Am(HT),Am(HP),Ar,Au,Bk(HP), Bk(HT)Ca,Ce(HT),Ce(HP),Cf(HT),Cm(HP), Cm(HT),Co(HT),Cs(HP),Cu,Eu,Fe(HT),H ₂ (LT), He,ir,K(HP),Kr,La(HT),La(HP),Li(HP),Mn(HT), Nd(HP),Ne,Ni,Pa(HT),Pb,Pd,Pr(HT),Pr(HP), Pt,Pu(HT),Rh,Si(HP),Sr,Th,Ti(HT),Xe,Yb
13	F ₂ /mC8	C2/c					1#a	1	F ₂
14	Ga/oC4	Cmcm	4c	0	0.133	1/4	10 - e	1	Ga
15	Ga/oC8	Cmca	8f	0	0.1525	0.0785	7-a	1	Ga
16	Ga/cl12	143d	12a	3/8	0	1/4	12-ь	1	Ga(HP)
17	Ge/tP12	P4 ₃ 2 ₁ 2	4a 8b	0.0912 0.1730	0.0912 0.3784	0 0.2486	4-a 4-a	1	Ge(HP)
18	Hg/hR1	R3m	3a	0	0	0	12-b	1	Hg,Po(HT),Te(HP)
19	In/tl2	l4/mmm	2a	0	0	0	12-b	1	Ce(HP),Ga(HP),In,Pu(HT),Sc(HP),Sn
20	La/hP4	P6 ₃ /mmc	2a 2c	0 1/3	0 2/3	0 1/4	12b 12d	2	Am,Bk,Ce,Cf,Cm,Gd(HT/HP),La,Nd,Pm,Pr, Si,Sm(HP)
21	Mg/hP2	P6 ₃ /mmc	2c	1/3	2/3	1/4	12-d	1	Al(HP),Ar,Ba(HP),Be,Ca(HT),Cd,Ce(HP),Cf, Co,Dy,Er,Eu(HP),Fe(HP),H ₂ (LT),Hr,He,Ho, Li(LT), Lu,Mg,N ₂ (LT),Na(LT),Os,Pb(HP), Re,Ru,S(HP),Scs(HP),Sm(HT),Sr(HT), Tb,Tc,Ti,TI,Tm,Y,Yb(LT),Yb(HT),Yb(HP), Zn,Zr
22	Mn/cP20	P4 ₁ 32	8c 12d	0.061 1/8	0.061 0.206	0.061 0.457	12-a 14-a	1	Mn(HT)
23	Mn/c158	i4 3m	2a 8c 24g 24g	0 0.317 0.356 0.089	0 0.317 0.356 0.089	0 0.317 0.042 0.278	16-a 16-a 13-a 12-a	3	Mn
24	N ₂ /hP24	P6 ₃ /mmc	241	0.2096	0.5429	0.8053	1#a	1	N ₂ (LT/HP)
25	N ₂ /hR16	R3c	12c 36f	0 0.2731	0 0.2127	0.0495 0.2828	1#a 1#a	1	N ₂ (LT/HP)
26	N ₂ /cP64	Pm3n	16i 48f	0.042 0.239	0.042 0.531	0.042 0.080	1#a 1#a	1	N ₂ (LT/HP)
27	NbS ₂ /hP6	P6 ₃ /mmc	2b 4f	0 1/3	0 2/3	1/4 0.125	12-b 12-d	2	Ть(нР)

TABLE 2. (continued)

No.	Structure type/PS	Space group	Wyckoff notation	Atom X	ic Coordii Y	nates Z	AET	No. of AET's	Elements crystallizing in this structure type
28	Np/oP8	Pnma	4c 4c	0.036 0.319	1/4 1/4	0.208 0.842	14b 16a	2	Np
29	Np/tP4	P42 ₁ 2	2a 2c	0 0	0 1/2	0 0.625	14–b 14–b	1	Np(HT),Sc(HP)
30	O ₂ /cP16	Pm3n					1#a	1	F ₂ ,O ₂
31	O ₂ /hR2	R3m	6c	0	0	0.0577	1#a	1	O ₂ (LT/HP)
32	P/oC8	Cmca	8f	0	0.098	0.910	3#a	1	As(HT),P
33	Pa/tl2	l4/mmm	2a	0	0	0	14–b	1	Hg(LT),Pa,Sn(HP)
34	Po/cP1	Pm3m	1a	0	0	0	6–a	1	Bi(HP),Ca(HP),P(HP),Po,Sb(HP)
35	Pr/hP6	P3 ₁ 21	6c	0.280	0.280	0.772	3#a	1	Pr(HP)
36	Pu/mP16	P2 ₁ /m	8 * 2e				Complex		Pu
37	Pu/mC34	C2/m	2a,4h,3 ∌	* 4i,2 * 8j			Complex		Pu(HT)
38	S/mP28	P2 ₁ /c	7 * 4e				7 * 2#a	1	S
39	S ₅ Se ₃ /mP32	P2/c	8 * 4g				8 * 2#a	1	S
40	S/mP56	P2 ₁ /c	14 * 4e				14 * 2#a	1	S(HT)
41	Sb/mP4	P2 ₁ /m	2e 2e	0.74 0.34	1/4 1/4	0.08 0.40	16–a 7–b	2	Bi(HP),Sb(HP)
42	Se/mP32	P2 ₁ /c	8 * 4e				8 * 2#a	1	Se
43	Se/mP64	P2 ₁ /c	16 * 4e				16 * 2#a	1	Se
44	Se/hP3	P3 ₁ 21	3a	0.217	0	1/3	2#a	1	Se,Te
45	Se/hR6	RĨ	18f	0.1602	0.2023	0.1205	2#a	1	Se(HT)
46	Sm/hR3	R3m	3a 6c	0 0	0 0	0 0.2220	12b 12d	2	Dy(HP),Gd(HP),Ho(HP),Li(LT),Lu(HP), Na(LT),Sm,Tb(HP),Tm(HP)
47	Sn/tl4	l4 ₁ /amd	4a	0	0	0	6a	1	Ge(HP),Si(HP),Sn
48	Si/cl16	la3	16c	0.1003	0.1003	0.1003	4a	1	Ge(HT/HP),Si
49	Te/mP4	P2,	2a 2a	0.25 0.48	0.23 0.00	0.48 0.02	14b 12b	2	Те(НР)
50	U/oC4	Cmcm	4c	0	0.105	1/4	12–d	1	Am(HP),Bk(HP),Ce(HP),Cf(HP),Cm(HP), Dy(LT),U
51	U/tP30	P4 ₂ nm	2a 4c 4c 4c 8d 8d	0 0.11 0.32 0.68 0.56 0.38	0 0.11 0.32 0.68 0.24 0.04	0.66 0.23 0.00 0.50 0.25 0.20	12a 15a 14a 14a 12a 14a	3	U
52	W/cl2	lm3m	2a	0	0	0	14—b	1	Ba,Be(HT),Bi(HP),Ca(HP)Ca(HT),Ce(HT), Cr,Cs,Dy(HT),Er(HT),Eu,Fe,Fe(HT),Gd(HT), He,Hf(HT),Ho(HT),K,La(HT),Li,Lu(HT), Mg(HP),Mn(HT),Mo,Na,Nb,Nd(HT),Np(HT), Pa(HT),Pr(HT),Pu(HT),Ra,Rb,Sc(HT), Sn(HP),Sr(HP),Ta,Tb(HT),Th(HT),Ti(HT), TI(HT),Tm(HT),U(HT),V,W,Y(HT),Yb(HT)

Group no.	No. of valence electrons	Available AET (see Fig. 2)	Non-metals	VI V IV	2 3 4	Double link (2#a) Triangle (3#a or 3#b) Tetrahedron (4-a)	O, S, Se, Te N, P C, Si, Ge
	available			-			
VIII	0	Cubo-octahedron (12-b) or twinned cubo-octahedron (12-d)	He, Ne, Ar, Kr, Xe, Rn	Lo Tabl for 7	ooking a e 4), w 70 elem	at the experimental availate the can confirm that our e ents, metals as well as no	ble for NC (see expectation holds on-metals.

VII 1 Dumb-bell (1#a) F, Cl, Br, I, At We observe four exceptions.

TABLE 3. The structure types in which the elements crystallize, presented in a periodic system representation with the HP and HT/LT modifications included (see inset). The numbers in the boxes refer to column 1 of Table 2.

(a) Sixteen metals have under NC the *cl*2 W type of structure, which corresponds to the rhombic dodecahedron as an AET. Nine of these elements (V, Nb, Ta, Cr, Mo, W, K, Rb and Ra) also have no other modification under HT or HP conditions. Hence this AET is very stable and more favourable than the cubic or hexagonal closed-packed AETs, which is, according to Young [13], imposed by a smooth repulsive interatomic potential. Alternatively, the Madelung electrostatic energy favours the rhombic dodecahedron as an AET.

(b) About half the f-elements crystallize in the hP4 La or hR3 Sm type of structure, both belonging to the two-environment type, having the c.c.p. and h.c.p. AETs. It is interesting that out of all the possible two-environment types these metals realize exactly the ones

which represent a combination of the cubic and hexagonal closed-packed AETs. The cohesive energy difference between these two AETs must be close to zero. Thus in a first-order approximation this special case of a two-environment type can be considered as a singleenvironment type found in the f-elements where the number of s-electrons is constant.

(c) Ga, Mn, Np, Pu and U have very unusual complex structures, the modifications of these elements crystallizing in single- to poly-environment types. Therefore these elements must have a significantly large proportion of directional bonding, because such complex structures cannot be formed with isotropic metallic bonding. These structures are very different from all previously discussed structures and it will take some time before such complex structures can be fully understood. TABLE 4. The atomic environment types (AETs) found in the crystal structures of the elements under normal conditions (298 K, 100 kPa). The elements marked with an asterisk are given for non-normal conditions.

н	*																								[He	*
12-b																										12Ь	:
Li	Be	7															Γ	B	c		N	*0		* F	*	Ne	*
14-b	12d																	Cluste structi	ur 4-a ure		1#a	1#	ŧa	1#a		12b	
Na	Mg	-															-	AI	Si		P	s		СІ	*	Ar	*
14b	12d																	12-b	4a		3#a	2#	ta	1#a		12b	
к	Са	Sc	Ti	v		Cr	Mn		Fe	Co		Ni		Cu		Zn	_	Ga	Ge		As	S	B	Br	*	Kr	*
14-b	12b	12d	12-	d 14	∔ b	14b	Cor	nplex	14-b	12-(t	12-b)	12-b		12–d		7-a	4-a		6a	2#	ŧa	1#a		12b	
Rb	Sr	Y	Zr	N	b	Мо	Тс		Ru	Rh		Pd		Ag		Cd		ln	Sn		Sb	-tr	•			Xe	*
14—b	12b	12–d	12–	d 14	i —b	14b	12-	đ	12–d	12-4	5	12t	,	12-b		12–d		12b	4a 6a 12-	Ь	6a	21	ŧa	1#a		12b	
Cs	Ba	La	Hf	Т	9	w	Re		Os	Ir		Pt		Au		Hg		TI	Pb		Bi	P	0	At		An	*
14-b	14—b	12–b 12–d	12-	d 14	1b	14-b	12-	ď	12-d	12-4	D	12-t	>	12b		12–b		12–d	12-	b	6a	6-	-a	1#a		12b	
Fr	Ra	Ac	+	Ce	Pr	 [N] Pm		 Sm	Eu	<u> </u>	Gd	Ţ	ть	<u> </u>	Dy		10	Er	<u> </u>	Tm	Yt	 ,	Lu		
	14b	12-b		12-b 12-d	12 12	b 1 d 1	2b 2d	12b 12d		12b 12d	12-t 14-t	0	12d		12c		12d	1	2d	12-4	d	12-d	12	b	12-0	1	
L	1	_ I		Th 12b	Pa		J 2-d or	Np 14_h		Pu Complex	Am		Cm		Bk 12+		Cf 12h	1	S	Fm		Md	No)	Lr		
				2-0	,		complex	16-a	i i	Complex	12-0		12-0		12c	Í	12-d										

(d) As, Sb, Bi and Sn, which all belong, according to their electrical conductivity (see Table 1), to the metals, have an octahedron (6-a) as an AET. This is only understandable if there is some directional covalent bonding between the atoms.

Summarizing the crystal structures of the elements under NC from the AET point of view shows that the metals crystallize (except Ga, Mn, Np, Pu and U) in one of the following four AETs: the octahedron, the cubo-octahedron, the twinned cubo-octahedron or the rhombic dodecahedron. The non-metal structures crystallize in structure types having either a dumb-bell, a double link, a triangle or a tetrahedron as an AET.

Looking at Table 3 reveals that tI2 In, hR1 Hg and oC4 U do not fit the general structural trend, but when

we look at the realized AEs they fit nicely (see Table 4).

4. Atomic environment classification for normal as well as high pressure and high temperature conditions

Including all HP and HT modifications leads to the 19 different AETs shown in Fig. 2, covering the coordination numbers 1–16, omitting only 5 and 9. All realized polyhedra are highly symmetrical and have also been found in the intermetallic structures types [11, 12, 14]. Classifying the 52 structure types into single-, two-, three- and poly-environment types respectively leads to the following results (see Table 5):

	o Io	ure	elements	point sets	lination er(s)							ļ	\tomi	c Env	viron	ment	Туре	s						
No.	Pears	Struct type	No. of	No. of	Coord	#	2#a	S#8	₽₽	4	Ţ	7-8	P 1	ц Ц	₽ ₽	11-a	12-8	12-b	12d	13a	14-8	4-4 1	ΞĮ	16-a
13	mC8	F ₂	1		1	\boxtimes																		
9	oC8	Cl ₂	3	1	1	\boxtimes																		
24	hP24	N ₂	1	1	1	\boxtimes																		
31	hR2	0 ₂	1	1	1	\boxtimes																		
25	hR16	N ₂	1	2	1	\boxtimes																		
30	cP16	02	2		1	\boxtimes																		
26	cP64	N ₂	1	2	1	\boxtimes																		
38	mP28	S	1	7	2		\boxtimes																	
39	mP32	S ₅ Se ₃	1	8	2		\boxtimes																	
42	mP32	Se	1	8	2		\boxtimes																	
40	mP56	S	1	14	2		\boxtimes																	
43	mP64	Se	1	16	2		\boxtimes																	
44	hP3	Se	2	1	2		\boxtimes																	
45	hR6	Se	1	1	2		\boxtimes																	
32	oC8	Р	2	1	3			\boxtimes																
35	hP6	Pr	1	1	3			\boxtimes					[
6	hP4	С	1	2	3				\boxtimes															
17	tP12	Ge	1	2	4					\boxtimes														
48	cl16	Si	2	1	4					\boxtimes														
7	cF8	С	4	1	4					\boxtimes														ĺ
4	mC4	Bi	1	1	6						\boxtimes													
47	tl4	Sn	3	1	6						\boxtimes		·											
2	hR2	As	5	1	6						\boxtimes													Ĺ
34	cP1	Po	5	1	6						\boxtimes		<u> </u>	·										
15	oC8	Ga	1	1	7							\boxtimes]											
5	hP1	Biln	1	1	8									\boxtimes]				_					
14	oC4	Ga	1	1	10										\boxtimes									
3	oP4	Be	1	1	11											\boxtimes								
8	aP4	Cf	1	3	12													\boxtimes						
19	t12	In	6	1	12													\boxtimes						
18	hR1	Hg	3	1	12													\boxtimes						
16	cl12	Ga	1	1	12													\boxtimes		L				
12	cF4	Cu	46	1	12													\boxtimes						
50	oC4	U	7	1	12														\boxtimes					
21	hP2	Mg	44	1	12														\boxtimes					
1	mP4	Am	1	2	14								L									X		L
29	tP4	Np	2	2	14		1	ļ		ļ	I	ļ	ļ			ļ			ļ	ļ	Ļ	X		
11	tP8	Cs	1	1	14	ļ				ļ		ļ	Į	ļ	ļ	ļ			ļ		L	X		<u> </u>
33	tl2	Pa	3	1	14								<u> </u>									X		<u> </u>
52	cl2	W	47	1	14	 		 		ļ	 	<u> </u>		ļ	 	ļ				ļ		X		
41	mP4	Sb	2	2	7/16			ļ	ļ	ļ	<u> </u>		X		ļ	ļ				L			<u> </u>	\bowtie
20	hP4	La	12	2	12/12	<u> </u>		ļ	ļ	ļ	ļ	ļ	<u> </u>			<u> </u>		K	K		ļ		 	
27	hP6	NbS ₂	1	2	12/12			\vdash		<u> </u>			<u> </u>	L	 		ļ	K	K		 		 	
46	hR3	Sm	9	2	12/12	ļ		_		ļ		 	 		<u> </u>			X	\bowtie	1		L	<u> </u>	
22	cP20	Mn	1	2	12/14	_	<u> </u>	\vdash				_	 	ļ	 	<u> </u>	А	k->	 		А	$ \downarrow $	┢──	┣
49	mP4	Te	1	2	12/14	-	-	-	-	┢		<u> </u>	_	<u> </u>	<u> </u>			X				K	 	k
28	oP8	Np		2	14/16	\vdash	⊢	\vdash	-	_	\vdash	┞	-	┣—	 		$ \downarrow $		1—	\mathbf{k}		K	┣	Ŕ
23	600	Mn		4	12/13/16		+	+	-	╟	-		╂—	–	\vdash	┨──	Ŕ		 	Ŕ	┢		\vdash	ŕ
	1P30		₽.	12	12/14/15	+	╂	┢		┨───	<u> </u>	 		-	 	┣—	Ю		-	┝	Ю		Ю	┢
101	1P30	<u> </u>	┞╴		12/14/15	+	╂	+			+	┨──	╂			+	仑	–	\vdash	┢	ŕ	\sim	Þ	\sim
30	mP16	PU D.	\downarrow	1 7	12/14/10	+	+	+	+	-	-	+	+	╂	+	\vdash	\vdash	–	伫	┢	┢	ŕ	┢╯	ŕ
13/	111034	1 ""	1 1	11	1 12/13/14/13	1	1 E	1	1	1	1	1	1	1	1	1	1/A		1	\sim	лЛ	1	\sim	4

TABLE 5. Classification of the structure types grouped into single-, two- and poly-environment types.

13 single-environment types, five two-environment types, three three-environment types and one poly-environment type.

We can see, for example, that the following five structure types have the rhombic dodecahedron as an AET and therefore belong to the same coordination type: mP4 Am, tP4 Np, tP8 Cs, tI2 Pa and cI2 W.

It is clear that these structure types vary considerably with respect to their symmetry, but in the atomic environments realized they differ only slightly. Although the simplification summarized in Table 5 does not seem to be the most obvious one, it should be borne in mind that most "exotic" environment types have only one representative.

The "exotic" types are the following coordination types: oC8 Ga (7-a), oC4 Ga (10-e), hP1 BiIn (Si, 8-c), oP4 Be (11-a), mP4 Sb (7-b+16-a), cP20 Mn (12-a+14-a), mP4 Te (12-b+14-b), oP8 Np (14-b+16-a), cI58 Mn (12-a+13-a+16-a), tP30 CrFe (U, 12-a+14-a+15-a), tP30 U (12-a+14-a+15-a), mC34 Pu and mP16 Pu (both poly).

The exceptions, hP4 La and hR3 Sm, have already been discussed. They belong to the two-environment type with the cubo-octahedron and the twinned cubooctahedron as AETs and they can be considered as a special case of a single-environment type.

If we neglect the 13 above-mentioned special modifications, we are left with the nine main single-environment types. In these nine single-environment types the following AETs are observed: the dumb-bell (CN1 1#a), the double link (CN2 2#a), the triangle (CN3 3#a+3#b) and the tetrahedron (CN4 4-a) are found in non-metals; the octahedron (CN6 6-a), the cubooctahedron (CN12 12-b), the twinned cubo-octahedron (CN12 12-d) and the rhombic dodecahedron (CN14 14-b) are found in metals.

Excluding the structure types with only one representative, we can simplify the structures of the elements with nine different AETs (nine different coordination types), including 260 out of 275 modifications. In these nine AETs, with the exception of the rhombic dodecahedron, the central atoms have just one kind of neighbouring atom at identical distances from the central atom. All other AETs, mostly observed in one modification, have non-equal distances within the coordination sphere, which indicates that those structures are either very exotic or their description is wrong.

We analyzed the influence of high pressure and high temperature on the AETs by looking at the known polymorphic transitions. Figure 3 shows (a) the polymorphic transformation schemes for eight AETs within the single-environment types, (b) two schemes for the two-environment types and (c) two schemes for the three-environment types. It is interesting that with increasing pressure as well as temperature all AETs

Single-environment type:

Fig. 3. The atomic environment type transformation schemes as a function of HP or HT for the (a) single-, (b) two- and (c) poly-environment types. The labels used refer to Fig. 2.

transform into one of the AETs only observed for metals (12-b, 12-d or 14-b).

These results are confirmed by Young [13], who also stated that with increasing pressure covalent bonds are destabilized and the elements of the top right-hand corner of the periodic table evolve towards close-packed structures.

As an example we take the transformation scheme of the tetrahedron (CN4 with label 4-a):

$$4-a \longrightarrow HP \longrightarrow 6-a \longrightarrow 8-a \longrightarrow$$

 $12-d \longrightarrow 12-b \longrightarrow 14-b$

An element normally having the tetrahedron as an AET will change according to the experimentally known polymorphic modifications with increasing pressure to 14-b in the sequence as given. Some of the elements having a tetrahedron as an AET under NC do not

H 12-b 12-d																										He 12- 12- 14-	ታ ቀ ቀ
LI	Be	٦																в		;	N		0	T	F	Ne	<u> </u>
12-b 12-d 14b	11a 12d 14b																		34	l#b ⊢a	1#a		1#a		1#a	12-	-b
Na	Mg	-																AI		51	P		s		CI	Ar	,
12b 12d 14b	12d 14b																	12-t 12-c	46	-a -a -c 2-b 2-d	3#a 6a		2#a		1#a	12- 12-	-р -р
к	Ca	Sc	Ti		v	Cr		Mn	Fe	Ī	Co	Ni		Cu		Zn		Ga	Ċ	4-0 3e	As		Se		Br	Kr	
12b 14b	6-a 12-b 12-d 14b	12b 12d 14b	12- 14-	¢ ¢	14–b	14b	, (Complex	12-b 12-d 14-b) 1 1 1	12b 12d	12-t	0	12b		12-d	1	7–a 12–ł	5 E	-a i-a	3#a 6-a		2#a		1#a	12-	-b
Rb	Sr	Y	Zr		Nb	Мо		Tc	Ru	F	Rh	Pd		Ag		Cd		In	5	ŝn	Sb		Te		<u> </u>	Xe	
14b	12b 12d 14b	12d 14b	12-	đ	14—b	14b	,	12–d	12-d	1	12b	12-1	2	12b		12-0	J	12-t) 4 6 1	⊢-a i–a 2–b 4–b	6-a 7-b 12- 16-	da	2#a 6a 12b 14b		1#a	12-	-Ъ
Cs	Ba	La	Hf		Та	w		Re	Os	-	r	Pt		Au		Hg		TI	F	b	Bi		Po		At	Rn	
12b 14b	12–d 14–b	12b 12d 14b	12- 14-	ф Ф	14b	14-b)	12d	12-d	1	12-b	12-1	D	12—b		12-b 14-b)	12t 12t 14t) 1 1	2b 2d	6~a 7b 14 16	b a	6-a 12-b	,	1#a	12-	-b
Fr	Ra	Ac		Ce	Pr		Nd	Pm		Sm	Eu		Gd		Tb	_	Dy		Но	1	Er	Tm		Yb	L	u	٦
	14—b	12-b		12-b 12-d 14-b) 3# 1 12) 12 14	a b d b	12b 12d	12-4 12-4	b d	12b 12d	12- 12- 14-	ф ф	12b 12d 14b		12-b 12-c 14-b		12-5 12-6 14-5		12-b 12-d 14-b		12d 14b	12-t 12-c 14-t		12-b 12-d 14-b	1 1 1	2b 2d 4b	
				Th 12-b 14-b	Pa 12 14	ے ہو م	U 12-a 12-d 14-a 14-b 15-a	Np 14-t 16-a	D a	Pu 12a 12b 13a 14b 15a 16a	Am 12- 12- 14-	ф ф ф	Cm 12-b 12-d		Bk 12t 12c		Cf 12-6 12-6)	Es		Fm	Md		No		r	

TABLE 6. Atomic environment types (AETs) observed in the element modifications in periodic system representation.

P. Villars, J. L. C. Daams / Atomic-environment classification of elements

follow this sequence but change directly into an AET with a higher CN.

Table 6 shows, in periodic system representation, all AETs found for each element in its different modifications. Here it is nicely demonstrated that with the exception of the p-elements C, N, O, As, P, S and Se and the halides (mainly with the AETs 1#a (dumbbell) and 2#a (double link)), all have either 12-d, 12b or 14-b as an AET. For 1#a and 2#a there has until now been no polymorphic transformation scheme, but as mentioned before, structures having these AETs are probably better described in terms of cluster environments. From this observation it seems to be a safe prediction that those elements will have no modifications with either 12-d, 12-b or 14-b as an AET. The periodic table shows a clear tendency for the p-elements with a high group number and a low quantum number to have $CN \leq 6$.

An explanation for the fact that the AET 14-b is much preferred at HT is given by Young [13] in terms of the higher entropy of the b.c.c. (cI2 W type) phase, given a sufficiently "soft" interaction potential. The "softness" of the interaction potential is approximately determined by the Gruneisen parameter γ .

5. Modified structure stability diagrams (SSDs) for the elements

SSDs have been very successful in separating the structure types of binary intermetallic compounds at

Fig. 4. The structure stability diagrams (SSDs) with AET stability domains (a) for the NC modifications and (b) with the HP and HT/LT modifications included. The labels used refer to Fig. 2.

constant stoichiometric ratios, *e.g.* AB, AB₂, etc. [5, 6]. Recently it was possible, by introducing the concentration as a variable, to extend the SSD for separating ternary and quaternary single-environment types [4]. In the approach with constant stoichiometric ratio the structure types could be separated, while in the approach with a variable concentration it was possible to separate different AET domains in the SSD. The axes normally used in the SSD are the sum of the valence electrons (VE), the differences between Zunger's pseudopotential radii $((r_s + r_p)^Z)$ and the difference in Martynov and Batsanov's [15] electronegativity $(X^{M&B})$ of the constituent elements or their analogous concentration-dependent expressions.

For the elements the differences mentioned are zero. Therefore we modified the SSD by using only the tabulated values of VE, $(r_s + r_p)^Z$ and $X^{M\&B}$. Since the electronegativity $(X^{M\&B})$ had no separation effect in the SSD, it seems to be irrelevant for the structure of the elements. Figure 4(a) shows the results for the element structures under NC. We observe a simple separation for all elements governed by VE and $(r_s + r_p)^Z$ only.

Including the HP and HT/LT modifications in our SSD, as we did in Fig. 4(b), made the interpretation only slightly more difficult. Again, it is possible to separate AET stability domains in the SSD. There are areas where definitely only one AET is stable for one of the modifications and others where three or four different AETs are stable for one of the modifications. We can use the observed separation in the AET stability domains for predicting the structure (AETs) of hitherto unknown HP and HT modifications. In Table 7 our predicted coordination types are given. We left out that AETs which are realized in only one representative because we think that it is not very sensible to base predictions on structures which occur just once.

6. Recommended atomic volumes

This section gives a complete, critically evaluated set of crystallographic data for the elements. Included in our list are the data of 275 modifications observed for the 96 elements as published in refs. 16 and 17. All modifications stable under NC as well as HP and HT/ LT conditions, metastable modifications, modifications stabilized by oxygen, nitrogen or carbon atoms and modifications observed in thin film experiments are included. The minimum requirement for a modification to be included in Table 8 is that at least the structure type has to be known (refined or assigned) as well as the unit cell dimensions.

In Table 8 under the headings "Temperature" and "Pressure" the temperatures and pressures are given at which the unit cell dimensions have been determined. A blank space is given for all cases where no explicit measuring conditions were published in the paper. Under the heading "Comments" we give, wherever

TABLE 7. Predicted atomic environment types (AETs) for HP or HT/LT modifications of some elements based on SSD-AET domains (cf. Fig. 4(b)).

Coordination type	Atomic environment type	Predicted high temperature and/or high pressure modifications
double link	2#a	Ро
tetrahedron	4-a	Рb
octahedron	6-a	Pb, S, Se
cubo-octahedron	12-b	Ba, Be, Er, Fr, Ge, Hf, Mg, Rb, S, Se, Ti, U, Y, Zr
twinned cubo-octahedron	12-d	Ac, Ga, Ge, In, Pa, Pu, Sn, Th
rhombic dodecahedron	14-b	Ac, Al, Bk, Cf, Cm, Co, Fr, Ga, Ge, H, In, Pb, Pm, Po, S, Se, Sm, Zr

TABLE 8. All element modifications listed alphabetically, with the data critically evaluated.

	e		[-		Unit-cell di	mension(s)			Comments
	ratu	ē	5-	e l						
	ad u	essu Pa]	arso	e ucti	а	ь	с	в	Atomic volume	
	ΞΞ	1 G	syr syr	typ	[nm]	[nm]	(nm]	ົ່	[10 ⁻² nm ³]	
Ac			cF4	Cu	0.5670(6)				4.557	
Ag Al	298 296		CF4 cF4	Cu	0.408626(4)				1.706 1.660	(5N) (5N)
Al	202	> 20.5	hP2	Mg	0.2693		0.4398		1.381	HP
Am	293		cF4	Cu	0.34681(8)		1.1241(3)		2.927	Stable below 1347K,5.2GPa
Am		7.8	cF4	Cu	0.4656(1)	1 1007(10)	0.0000/5	100.11	2.523	HP stable above 5.2GPa
Am		12.5	oC4	U U	0.3025(5)	0.5968(10)	0.2830(5)	106.11	2.444	HP HP stable above 15GPa
Ar Ar	83.65		cF4	Cu	0.5316		0.6141		3.756	LT
As	296		hR2	As	0.37598(3)		1.0547(2)		2.152	(4N)
As Au	298		oC8	P	0.362	1.085	0.448		2.243	HT stable above 721K
В	200		hR105	B	1.096(5)		2.389(9)		0.789	(5N) (5N)
B			hR12	B	0.491		1.257		0.729	LT stable below 1373K
B			tP50	B	0.875(2)		0.5075(1)		0.777	
Ba Ba	298	62	cl2	W Mo	0.5013(5)		0.6154		6.299	(99.3%)
Ba		0.2	cF4	Cu	0.605(2)		0.0104		5.536	metastable
Be Be	293 1527		hP2	Mg W	0.22858(2)		0.35843(3)		0.811	(3N); stable below 1527K, 28GPa
Be		28.3	oP4	Be	0.2168	0.3755	0.3416		0.695	HP stable above 28.3GPa
Bi Bi	298	0.26	hR2 mC4	As Bi	0.45460(5)	0.6117(2)	1.1862(1)	110.33	3.538	
Bi	298	2.5	cP1	Po	0.3177(9)	0.0117(2)	0.0004(2)	110.55	3.207	НР
Bi		3.55 9	mP4 cl2	Sb W	0.665	0.420	0.465	85.33	3.236 2 744	HP HP
Bk		•	hP4	La	0.3428(3)		1.1075(1)		2.818	LP stable below 8GPa
BK Bk			CF4 cF4	Cu	0.4997(4)				3.112 2.782	HT stable above 1250K HP stable between 8-22GPa
Bk	065 75	45.9	oC4	U	0.2317	0.5584	0.4480		1.449	HP
Č	205.75		hP4	C ¹ 2	0.000	0.449	0.874		0.882	LI
C	298		cF8	C	0.3566986(3)				1.135	HP stable above 60GPa
Ca	688		hP2	Mg	0.33884(2)		0.650(2)		4.363	(99.8%); HT stable 617-883K
Ca	888	26.5		W	0.4488(5)				4.520	(99.8%); HT stable above 883K
Ca		39	cP1	Po	0.2615(2)				1.788	HP
Cd	294		hP2	Mg	0.2972(8)		0.5605(4)		2.144	(6N)
Če			cF4	Cu	0.51612(5)		1.1007		3.437	HT stable above 334K
Ce Ce	1030	15	cF4	Cu	0.412				3.497 2.800	HT HP stable above 0.7GPa
Ce		5.8	oC4	Ũ	0.3049	0.5998	0.5215		2.384	HP stable between 5.1-9.5GPa
Ce		6.5 30.4	nP2 tl2	Mg In	0.316(1) 0.2827(4)		0.520(2)		2.248 1.909	(3N); HP stable above 5GPa HP stable above 12 5GPa
Cf			hP4	La	0.3380(2)		1.1025(2)		2.727	coexists with hP4 La with
Cf			hP2	Mg	0.3988(4)		0.6887(8)		4.743	a=0.4002nm, c=1.2803nm
Cf		46.6	oC4	Ŭ	0.2313	0.5526	0.4472		1.429	HP
Cf			aP4	Cf	0.3307	0.7412	0.2793	89.1/85.2/85.7	4.735	HP
CI	203		oC8	Cl ₂	0.624	0.448	0.826		2.886	LT L B stable below 22CBs
Cm	200		cF4	Cũ	0.493(1)		1.1001(0)		2.996	HP stable between 23-43GPa
Cm Cm		455	cF4 oC4	CuU	0.5039(1)	0.5810	0.4515		3.199	HT; two phase sample HP stable above 43GPa
Co	700		hP2	Mg	0.25071(3)		0.40695(5)		1.108	(5N); LT stable below 673K
Co	793	:	cr-4 hP46	Cu	0.35688		1.0542		1.136 1.363	(99.92%); HT stable above 673K (3N); metastable; C-stabilized
Cr	290		ci2	W	0.28844		0 2007		1.200	(99.95%)
Cr			cP8	Cr ₃ Si	0.2662		0.2007		1.217	nr thin films
Cs Cs			cl2 cF4	W Cu	0.6141(7) 0.6465(15)				11.579 6 755	нр
Čs	300	4.25	cF4	Cũ	0.5800(7)				4.878	HP stable between 4.22-4.27GPa
Cs Cs	300	4.1 18.2	cF4 tP8	Cu Cs	0.5984(11) 0.6506(4)		0.5627(5)		5.357 2.977	HP stable between 2.37–4.22GPa HP stable above 10GPa
Cu		. –	cF4	Cu	0.361491		0 56475(0)		1.181	(5N)
Dy Dy			cF4	™g Cu	0.35903(2) 0.518(5)		0.004/5(2)		3.152 3.475	(99.8%) thin films
Dy Dv	86		cl2	- W	0.398(2)	0.6194	0.5679		3.152	HT presumably of 411 time
Dý		7.5	hR3	Sm	0.334(1)	0.0104	2.45(1)		2.630	HP stable above 4.8GPa
Er			hP2	Mg	0.35588(3)		0.55874(3)		3.064	(99.8%)

	er				<i></i>	Unit-cell di	nension(s)			Comments
	eratu	nre	5 6	ture					Atomic	
	emp.	ress GPa]	ears ymb	truct /pe	a farmal	b	C [nm]	β	volume	
E r	<u> </u>	<u>م ک</u>		s to	[nm]	[um]	(AM)	[]	2 059	
Er			cF4	Cu	0.509(5)				3.297	thin films
Eu Eu			c⊦4 cl2	W	0.4580(2) 0.4583				2.402 4.813	(99.98%); LP stable below 11GPa
Eu		13.0 15.1	hP2 hP2	Mg Mg	0.3398		0.5385		2.693 2.739	(99.98%); HP stable above 13GPa
Eu		20	hP2	Mg	0.3273	0.000	0.5083	102.17	2.358	(99.98%); HP stable above 19.9GPa
F	45.4 53.33		cP16	$\frac{F_2}{O_2}$	0.550	0.338	0.728		1.654	LT
Fe	293	127	cl2	Ŵ	0.28665		0 3962		1.178	(99.97%); LT stable below 1183K
Fe	1349	12.7	cF4	Cu	0.36599		0.0002		1.225	HT stable above 1183K
Fe Ga	291		oC8	w Ga	0.29315	0.76448(2)	0.45107(1)		1.260 1.947	(99.97%); HT stable above 1663K
Ga	313	2.6 2.8	cl12	Ga	0.5951(5)		0 4452(5)		1.756	HP HP
Ga	191	2.0	hR22	Ga	0.9087(6)		1.702(1)	92.03	1.844	metastable
Ga Ga	248 257		mC4 oC4	Ga Ga	0.2766(8)	0.8053(24) 0.813(3)	0.3332(10) 0.317(3)		2.133 1.869	metastable metastable
Ga			oC40	Ga	1.0593(2)	1.3523(3)	0.5203(1)		1.863	metastable
Gd			cl2	W	0.30300(3)		0.37820(0)		3.322	HT stable above 1508K
Gd Gd	573	3.5 7.5	hR3 hP4	Sm La	0.349(1)		2.56(1) 1.1047		3.000 2.768	HP stable above 2.5GPa (3N): HP
Gd	2006		cF4	Cu	0.540(5)				3.937	thin films
Ge	296	12	tl4	Sn	0.565752(17)		0.27463		2.264	HP stable above 10.5GPa
Ge Ge		10.8	tP12 cl16	Ge Si	0.58017		0.66257		1.859 2.071	HP stable above 12GPa
Ge			hP4	SZn	0.394(5)		0.655(5)		2.201	metastable
н	13.66		hP2	Mg	0.5338		0.6162		3.805	LT
He	15 4.06	0.125	cF4 hP2	Cu Ma	0.4240		0.5798		1.906 3.173	
He	1.53	0.03	cl2	Ŵ	0.4110		0 5061		3.472	LT stable balance 00501/
Hf	298		cl2	W	0.3198		0.5061		2.241 2.362	HT stable above 2050K
Hg Ho	227		hR1 hP6	Hg Ha	0.3460		0.6702		2.316	I T stable below 118K: As-stabilized
Hg	79		tl2	Pa	0.3995		0.2825		2.255	LT/HP
Ho	1		cl2	W	0.35773(1)		0.50150(2)		3.112	(99.4%) HT
Ho Ho		8.5	hR3 cF4	Sm Cư	0.334(1) 0.515(5)		2.41(1)		2.587 3.415	HP stable above 7.0GPa thin films
1			oC8		0.72697	0.47903	0.97942		4.263	(CNI)
lr	297		cF4	Cu	0.38385		0.43400(2)		1.414	(99.97%)
ĸ	301	12.4	cl2 cF4	W Cu	0.533017(34)				7.572 3.411	(99.95%) HP stable above 12GPa
Kr	115.61		cF4	Cu	0.5810		1 2150(9)		4.903	LT
La			cF4	Cu	0.5291(5)		1.2133(8)		3.703	HT stable between 673–1123K
La	298	2.0	cF4	W Cu	0.426				3.866 3.455	HT stable above 1113K HP
	298		ci2 hB3	W Sm	0.351004(41)		2 2734(5)		2.162	(99.8%) (4N): LT stable below 20K
Li	78		hP2	Mg	0.3111		0.5093		2.465	two phase sample
Lu		8.0	cr4 hP2	Mg	0.3900(3) 0.35031(4)		0.55509(4)		1.483 2.950	HP stable above 6.9GPa (3N)
Lu	296	23	ci2	Ŵ	0.390(2)		2 177(4)		2.966	HT '
Mg	298		hP2	Mg	0.320944		0.521076		2.324	(99.94%)
Min	293	58	cl2 cl58	W Mn	0.29530(20)				1.288 1.220	HP stable above 50GPa (99.87%); LT stable below 993K
Mn Mn	1008		cP20 cF4	Mn Cu	0.6482				1.362	(99.87%); HT stable above 993K
Mn	1416		cl2	W	0.3080				1.461	HT stable above 1416K
N	296	2.51	hP2	Mg	0.3629(4)		0.5890(10)		1.558 3.359	(99.994%) LT/HP
N N	110 110	6.2 7.8	hP24 hR16	N ₂ N ₂	0.8119(2) 0.8020(12)		1.1332(11) 1.1104(29)		2.695 1.289	LT/HP LT/HP
N Na	299 298	4.9	cP64	N ₂	0.6164(1)		,		0.366	LT/HP
Na	5		hP2	Mg	0.3767		0.6154		3.920	LT stable below 36K
Nb	20		nH3 ct2	Sm W	0.376586(8) 0.33063(2)		2.76531(2)		3.774 1.807	martensitic phase (99.995%)
Nd Nd	1156		hP4 cl2	La W	0.36579(3) 0.413		1.17992(5)		3.418 3.522	(99.8%) HT stable above 1156K

TABLE 8. (continued)

	e					Unit-cell di	mension(s)			Comments
	ratu	e	<u> </u>	Ð						
	hpe	ssu [a]	150	uctu B	a	Ь	c	R	Atomic	
	Σ	Pre [GP	Pea	Stri	[nm]	[nm]	[nm]	ເື	[10 ⁻² nm ³]	
Nd	573	5.5	cF4	Cu	0.4917				2.972	(3N); HP/HT
Ne	29.41		c⊢4 cF4	Cu	0.4462				2.221	LI (99.997%)
Ni			hP2	Mg	0.2622		0.4321		1.287	thin films; O-stabilized
Np Np	293 586		oP8 tP4	Np No	0.6663(3)	0.4/23(1)	0.4887(2) 0.3388(2)		1.922 2.031	HT stable between 551803K
Np	849		cl2	Ŵ	0.352		0.0000(2)		2.181	HT stable above 849K
8	54.21 299	5.5	cP16 hR2	O_2	0.683		1.02249(8)		1.991	LT stable below 54.21K
õ	23	0.0	mC4	022	0.5403(5)	0.3429(3)	0.5086(5)	132.53	1.736	ίŤ
Os	297 291	9.6	0F8 hP2	O ₂ Ma	0.42151(6)	0.29567(4)	0.66897(17) 0.43099(5)		1.042	(HP (99.8%)
P			oC8	P	0.33136(1)	1.0478(5)	0.43763(1)		1.899	
P		9 25	nH2 cP1	AS Po	0.339		0.864		1.433	(5N); HP stable between 5.3-9.8GPa HP stable above 10GPa
Pa			tl2	Pa	0.3932(3)		0.3238(3)		2.503	
Pa Pa	1443		c⊦4 cl2	W	0.5031(2)				3.184	HI HT stable above 1443K
Pb	298	10.0	cF4	Cu	0.49508(4)		0.5007(7)		3.034	(5N)
Pb Pd	298 293	13.9	nP2 cF4	мg Cu	0.3265(4)		0.5387(7)		2.487	(5N); HP stable above 13GPa (99.993%)
Pm			hP4	La	0.365		1.165		3.360	
Po			CP1 hB1	Po Ha	0.3345(2)		0.4916(5)		3.743	LT stable below 348K
Pr			hP4	La	0.36725(7)		1.18354(12)		3.456	(3N)
Pr Pr	1094 293		cF4	W Cu	0.413				3.522 3.487	HT HT
Pr	298	4.0	cF4	Ču	0.488				2.905	HP
Pr Pt	298	14.4	hP6 cF4	Pr Cu	0.3240		1.5762		2.388	HP stable above 14.4GPa
Pu	294		mP16	Pu	0.6183(1)	0.4822(1)	1.0963(1)	101.79	2.000	(3N); LT stable below 395K
Pu Pu	366 508		mC34	Pu Pu	1.1830	1.0449 0.57682(4)	0.9227	138.65	2.216 2.314	HT stable between 395–479K (99 85%): HT stable between
						0.01002(1)	(2.011	486–585K
Pu	653		CF4	Cu	0.46347				2.489	(99.97%); HT stable between 592–724K
Pu	750		tl2	In	0.3339(3)		0.4446(7)		2.479	(99.97%); HT stable between
Pu	773		ci2	w	0.36375				2,407	724–758K HT: stable above 724K
Ra			cl2	Ŵ	0.5148(15)				6.822	
Re			hP2	W Ma	0.5585		0.4458		9.284 1.470	(4N)
Rh			cF4	Cu	0.37956(3)		0.4004.0(0)		1.367	(4N)
S			oF128	Mg S	1.0437(10)	1.2845(10)	2.4369(10)		2.552	(4N) LT stable below 368.5K
s			mP32	S ₅ Se ₃	0.8442(30)	1.3025(10)	0.9356(50)	124.98	2.634	
ŝ	163		mP56	Se	1.5096(5)	0.5998(7)	2.0951(5)	133.91	2.441	
S			mP28	S	0.9680(3)	0.7641(2)	0.9409(2)	102.08	2.430	
SD SD		7	cP1	Po	0.4297		1.1244		2.997	HP stable between 6-7.5GPa
Sb	423	11.5	mP4	Sb	0.5752	0.3914	0.4452	85.35	2.498	HP stable above 8GPa
50 Sb		9.0	hP2	Mg Ma	0.3369		0.533		2.620	thin films; metastable
Sb			tl2	In	0.301		0.496		2.247	thin films; metastable
50 Sc			CF4 hP2	Ma	0,33090(1)		0.52733(1)		2.449	(99.6%)
Sc	1610	06.0	cl2	Ŵ	0.4541		0 4761/20)		4.682	HT stable above 1610K
Sc Sc		33.5	tP4	Np	0.3758(11)		0.318(1)		1.779	HP stable above 20GPa
Sc			cF4	Cu	0.476(1)		0 4955		2.696	thin films; H-stabilized
Se			mP32	Se	0.931	0.807	1.285	93.13	3.013	(314)
Se			mP64	Se	1.5018(1)	1.4713(1)	0.8789(1)	93.61	3.028	I T stable below 378K
Se			cP1	Po	0.2982(3)		0.4423(0)		6.314	(99.98%); metastable
Si Si	303		cF8 ti⊿	C Sn	0.54306		0 2585		2.002	(6N) HP stable above 13GPa
Si		20	hP1	Biln	0.2527		0.2373		1.312	HP stable between 16-35GPa
Si Si		43 87	hP2 cF4	Mg Cu	0.2444		0.4152		1.074 0.932	HP stable above 43GPa HP stable above 78GPa
ŝi		>0.0016	hP4	La	0.380		0.628		1.963	
Si Sm	273		cl16 hR3	Si Sm	0.6636(5) 0.36280		2,6194		1.826 3.318	recovered from HP experiment (99.8%); LT stable below 980K
Sm	980		hP2	Mg	0.3644(5)		0.5876(5)		3.379	HT stable above 980K
Sn	298		nP4 tl4	La Sn	0.58317(2)		0.31813(2)		3.305 2.705	(4N)
Sn	293		cF8	С	0.64892(1)		• ·		6.832	(4N) 1

	e J					Unit-cell di		Comments				
	Temperati [K]	Pressure [GPa]	Pearson symbol	Structure type	a [nm]	b [nm]	с [nm]	β [°]	Atomic volume [10 ⁻² nm ³]			
Sn Sn Sn Sr Sr	298 498	24.5 53	tl2 tl2 cl2 cF4 hP2	In Pa W Cu Mg	0.31815(2) 0.3519 0.3287 0.60849(5) 0.428(2)		0.58313(2) 0.3271 0.705(2)		2.951 2.096 1.776 5.632 5.592	HP stable between 11.8–41.8GPa HP stable above 50GPa (99.5%); LT stable below 488K (99.5%); HT stable between 466 9754		
у Уларрири преселении при преседение и преседение и преселение при преселение преседение преседение и преседение п Улариание преседение преседение преседение преседение преседение преседение преседение преседение преседение пр	498 901 299 300 298 220 293 298 1723 293 1193 298 291 535 517 298 955 1073 300 298 161.24 298	28.8 3 4.5 11.5 4 11.6	hP2 cl222 cl222 cl232 cl	ש שאאשארייקייקייקייקייקייקייקייקייקייקייקייקייק	0.428(2) 0.487(2) 0.36092 0.402(2) 0.3568(7) 0.3068(4) 0.520(5) 0.3605 0.2740 0.4456(1) 0.4456(1) 0.4456(1) 0.4458 0.3104(5) 0.4603 0.5089(1) 0.4411(1) 0.29503(6) 0.33112 0.46 0.33142 0.46 0.334496(2) 0.3327(5) 0.3627(5) 0.3627(5) 0.506(5) 0.28535 1.07589 0.3532 1.052 0.30309 0.31652 0.30309 0.31652 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36515(2) 0.36092 0.36515(2) 0.36092 0.36092 0.36092 0.36515(2) 0.36092 0.36092 0.36092 0.3615(2) 0.	0.6244 0.7513(10) 0.58648	0.705(2) 0.56966 2.581(5) 1.487(2) 0.5706 0.4398 0.5921(2) 1.2036 0.4760(9) 0.3822 0.46810(2) 0.282 0.55137(4) 0.55546(4) 2.348(4) 0.49543 0.56531 0.557 0.57474(4)	92.71	5.592 5.775 1.801 3.213 3.248 3.162 1.424 3.515 3.211 1.430 3.394 3.076 2.772 2.338 3.295 3.472 1.764 1.706 1.723 2.841 2.907 2.922 3.010 3.012 2.501 3.239 2.073 2.181 2.203 2.055 1.392 1.586 6.401 3.318 3.237	(99.5%); HT stable between 486–875K (99.5%); HT stable above 875K (99.5%); HT stable above 223K HT (99.8%); HT stable above 2.5GPa HP stable between 28–32GPa thin films presumably oC4 U–type (5N) HP stable above 1.5GPa HP HP stable above 1.5GPa HP HP stable above 1.5GPa (99.8%); LT stable below 1673K (99.93%); HT stable above 1673K (99.93%); HT stable above 1673K (99.93%); HT stable above 1673K (99.93%); HT stable above 1153K C-stabilized LT stable below 503K (99.995%); HT stable above 503K HT HP stable above 11.6GPa thin films LT stable below 935K HT stable below 935K HT stable below 935K HT stable below 11.6GPa thin films LT stable below 1003K (99.74%) (3N) LT stable below 161.24K (3N)		
Y Yb Yb Yb Yb	296 1047 295	34.0	cF4 cF4 hP2 cl2 hP2 hP2	Cu Cu Mg W Mg	0.583(2) 0.54862(4) 0.38799 0.444 0.3015		0.63859 0.4823 0.494616(4)		4.954 4.128 4.163 4.377 1.899	(3N) (3N); LT stable below 270K HT (99.98%); HP stable above 30.9GPa (5N)		
Zr Zr Zr			hP2 hP3 cl2	Mg AIB ₂ W	0.323178 0.5036 0.3568(5)		0.514831 0.3109		2.328 2.276 2.271	(99.995%) recovered from HP experiment metastable		

available, the purity of the elements as well as their stability range.

The recommended atomic volumes from our analysis are given in Table 9 in a periodic table representation. These atomic volumes are calculated by dividing the unit cell volume by the number of atoms in the unit cell for the modification stable under normal conditions or closest to these conditions. Figure 5(a) shows our recommended atomic volumes in a property vs. atomic number plot with the atoms sorted as in the periodic table. For comparison we also give the metallic radii (for CN = 12) of Teatum *et al.* (ref. 1, p. 151) in Fig. 5(b), the covalent radii according to Pauling (ref. 2, p. 98) in Fig. 5(c) and the ionic radii according to Kordes (ref. 2, p. 98) in Fig. 5(d). These radii are all derived from interatomic distances in intermetallic compounds with predominantly metallic, covalent or ionic bonding.

It is obvious that the general pattern for our atomic volumes is very similar to that of the metallic and covalent radii. The trend along the same period as well as along the same group deviates only in minor details. The behaviour of the ionic radii from Kordes for the s- and the d³- to d¹⁰-elements is also similar to our pattern, while for the d¹⁰- to d¹²- and the p-elements it differs significantly, especially along the period. We

н	*																										F	le *
1.902																											1	.906
เ	Be	7															Γ	в	ľ	C	T	N	*	0	*	F	*1	ve *
2.162	0.811																1	0.789	9 (0.882		1.289		1.736	5	1.855	2	2.221
Na	Mg	-															-	AI		Si		P		5		CI	*/	Ar *
3.926	2.324																	1.660		2.002		1.899		2.552	2	2.886	з	8.756
ĸ	Са	Sc	Тті		TV	Cr		Mn	Fe	C	,	Ni		Cu		Zn		Ga		Ge		As	<u>.</u>	Se		Br	*	(r *
7.572	4.363	2.500	2.500 1.764 1.392 1.200		10	1.220 1.178		3 1.108		1.09	1.093		31 1.521		1	1.947		2.264		2.152		2.727		3.277		1.903		
Rb	Sr	- Y	Zr Nb Mo		Тс	c Ru			Pd		Ag	g Cd			In		Sn	n S		Sb Te			<u> </u>		(e *			
9.284	5.632	3.318	2.3	28	1.807	1.55	8	1.430	1.35	7 1.:	67	1.46	9	1.706	5	2.144	4	2.617	7	2.705		2.997	7 3	3.394	•	4.263	e	6.401
Ce	Ba					Be Os				Pt		Au F		Ha			Pb			Bi		Po		At		<u> </u>		
11.579	6.299	3.741 2.241		1.801	1.58	6	1.470	1.39	1 1.4	1.414		1	1.697		2.316		2.841 3		3.034	.034		3	3.743		(5.75)		8.25)	
		ł																										
Fr	Ra	Ac		Ce	F	Pr	Nd	Pn	1	Sm	Eu		Gd		Тb		Dy		Но	ļ	Er		Tm	Ţ	Yb	Li	J	
(13)	6.822	4.557		3.47	78 3	.456	3.41	8 3.3	60	3.318	4.81	13	3.310	o I	3.21:	3	3.152	2	3.112	: 3	3.064	•	3.010		4.128	3 2.	950	
			\bot																									
				Th			U 0.07	Np		Pu	Am	7	Cm		Bk		Cf		Es	ļ	Fm Md				No) Lr		
				3.25	, 5 2		2.07	1.5	22	2.000	2.92	_/	2.990	D	2.011	•	2.121											

TABLE 9. The recommended atomic volumes (10^{-2} nm^3) of the elements under normal conditions (198 K, 100 kPa). The elements marked with an asterisk are given for non-normal conditions.

observe a doubling of the radii for the d^{11} - and d^{12} elements and a clear decrease in the ionic radii for the p-elements with increasing group number.

Using one of the above-mentioned radii in the SSD for intermetallic compounds, however, was not successful. Only the introduction of the pseudopotential radii $(r_s + r_p)^z$ of Zunger led to the complete separation of the structure types into AET domains. These radii are derived from a model in which the valence and core atoms are considered separately. The pseudopotential reproduces only the valence charge density of the solid. This type of potential can be used to determine the orbital-dependent radii, *e.g.* the radii are different for s-, p- and d-electrons. Figure 5(e) shows the pseudopotential radii sum $(r_s + r_p)^z$ of Zunger. Its

general trend is analogous to the ionic radii of Kordes if the d^{11} -, d^{12} - and p-elements are shifted by approximately 0.4 to a lower value and the total plot is adjusted by a scale factor.

7. Conclusions

It is shown in this paper that the AET approach simplifies the structural effects found for the chemical elements. Furthermore, it can be seen that the singleenvironment types are greatly preferred by the chemical elements under NC. Under HT/LT or HP conditions even the few two- and poly-environment types stable under NC will transform into a single-environment type.

Rb Na ы Н2 $(r_s + r_p)^Z$ [a.u.] (e) Fi Cs Fib K Na Li Ac Ht Ta W Re Os Ir Pt Au Hg Po Te Se S O₂ Ra ь. Sb As P в Po Sn Ge Si C Ва La Zr Nb Mo Tc Ru Rh Pd Ag Cd Sr Ca Mg Br2 Cl2 F2 Ga Al Сc N₂ 8e

13 12

11 Atomic

6

Fi⊾ Ba Sr Ca Mg Be Ra

C

Cs Rb K

Na

Li H2

2.0

0.5

(c)

(10⁻¹nm)

volume [10⁻²nm³] 10

(a)

Fig. 5. (a) The recommended atomic volumes of the elements vs. atomic number. (b) The radii for CN = 12 after Teatum et al. (c) The covalent radii according to Pauling. (d) The Kordes ionic radii. (e) The pseudopotential radii according to Zunger.

A similar observation was made by Eliseev [18], who investigated the point-set symmetry of the elements. If we combine the modified SSD with the atomic

environment transformation scheme, it is possible to

predict potential element modifications. Our work also

reveals nicely the "exotic" element structures, all having

AETs with non-equal distances. Such structures either

have a very complex bonding situation or the models

are not correct.

References

- 1 W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley, New York, 1972.
- 2 G. V. Samsonov (ed.), Handbook of the Physicochemical Properties of the Elements, IFI/Plenum Data Corporation, 1968, p. 98.
- 3 H. W. King, in M. B. Bever (ed.), Encyclopedia of Materials Science and Engineering, Vol. 2, Pergamon, Oxford, 1986, pp. 985-994.

- 4 P. Villars and F. Hulliger, J. Less-Common Met., 132 (1987) 289.
- 5 P. Villars, J. Less-Common Met., 92 (1983) 215.
- 6 P. Villars, J. Less-Common Met., 109 (1985) 93.
- 7 P. Villars, K. Mathis and F. Hulliger, in F. R. de Boer and D. G. Pettifor (eds.), *Cohesion and Structure*, Vol. 2, *The Structures of Binary Compounds*, North-Holland, Amsterdam, 1989, p. 1.
- 8 A. Zunger, in M. O'Keefe and A. Navrotsky (eds.), Structure and Bonding in Crystals, Academic, New York, 1981, p. 73.
- 9 G. O. Brunner and D. Schwarzenbach, Z. Kristallogr., 133 (1971) 127.
- 10 J. L. C. Daams, P. Villars and J. H. N. van Vucht, Z. Kristallogr., 185 (1988) 714.
- 11 J. L. C. Daams, P. Villars and J. H. N. van Vucht, J. Alloys Comp., 182 (1992) 1.

- 12 J. L. C. Daams and P. Villars, J. Alloys Comp., 197 (1993) 243.
- 13 D. A. Young, Comm. Condens. Mater. Phys., 15 (3) (1991) 175.
- 14 J. L. C. Daams, P. Villars and J. H. N. van Vucht, Atlas of Crystal Structure Types for Intermetallic Phases, ASM International, Materials Park, OH, 1991.
- 15 A. Y. Martynov and S. S. Batsanov, Russ. J. Inorg. Chem., 25 (1980) 1737.
- 16 P. Villars and L. D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 2nd edn., 1991.
- 17 T. B. Massalski, *Binary Alloy Phase Diagrams*, ASM International, Materials Park, OH, 2nd edn., 1990.
- 18 A. A. Eliseev, Russ. J. Inorg. Chem., 35(1) (1990) 6.